1,121 research outputs found

    LANDSAT menhaden and thread herring resources investigation, Gulf of Mexico

    Get PDF
    The author has identified the following significant results. The most significant achievements thus far include the successful charting of high probability fishing areas from LANDSAT MSS data and the successful simulation of an operational satellite system to provide tactical information for the commercial harvest of menhaden

    LANDSAT menhaden and thread herring resources investigation

    Get PDF
    The author has identified the following significant results. The relationship between the distribution of menhaden and selected oceanographic parameters (water color, turbidity, and possibly chlorophyll concentrations) was established. Similar relationships for thread herring were not established nor were relationships relating to the abundance of either species. Use of aircraft and LANDSAT remote sensing instruments to measure or infer a set of basic oceanographic parameters was evaluated. Parameters which could be accurately inferred included surface water temperature, salinity, and color. Water turbidity (Secchi disk) was evaluated as marginally inferrable from the LANDSAT MSS data and chlorophyll-a concentrations as less than marginal. These evaluations considered the parameters only as experienced in the two test areas using available sensors and statistical techniques

    A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment

    Get PDF
    The UCNA collaboration is making a precision measurement of the β asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be ϵ(overbar) = 0.9985(4)

    Cluster Approximation for the Contact Process

    Full text link
    The one-dimensional contact process is analyzed by a cluster approximation. In this approach, the hierarchy of rate equations for the densities of finite length empty intervals are truncated under the assumption that adjacent intervals are not correlated. This assumption yields a first order phase transition from an active state to the adsorbing state. Despite the apparent failure of this approximation in describing the critical behavior, our approach provides an accurate description of the steady state properties for a significant range of desorption rates. Moreover, the resulting critical exponents are closer to the simulation values in comparison with site mean-field theory.Comment: 9 pages, Latex format, 2 postscript figure

    On the Hausdorff dimension of regular points of inviscid Burgers equation with stable initial data

    Full text link
    Consider an inviscid Burgers equation whose initial data is a Levy a-stable process Z with a > 1. We show that when Z has positive jumps, the Hausdorff dimension of the set of Lagrangian regular points associated with the equation is strictly smaller than 1/a, as soon as a is close to 1. This gives a negative answer to a conjecture of Janicki and Woyczynski. Along the way, we contradict a recent conjecture of Z. Shi about the lower tails of integrated stable processes

    How the vision of a clinician and an educator brought the MA Dental Law and Ethics course to life.

    Get PDF
    This paper reflects on an educational development that is Dental Law and Ethics course as the course approaches its 5th anniversary. The authors outline their personal journey into developing and delivering this course as well share best practice in relation to teaching and learning dental postgraduate students who may approach the subject in different ways. It also highlights the vision behind this provision and how it is received by dental practitioners. The paper shares the learners’ perception of topics such as ethics in comparison to law, and it highlights the perspective of both authors in teaching and following the students’ journey in this course

    The spectral gap for some spin chains with discrete symmetry breaking

    Full text link
    We prove that for any finite set of generalized valence bond solid (GVBS) states of a quantum spin chain there exists a translation invariant finite-range Hamiltonian for which this set is the set of ground states. This result implies that there are GVBS models with arbitrary broken discrete symmetries that are described as combinations of lattice translations, lattice reflections, and local unitary or anti-unitary transformations. We also show that all GVBS models that satisfy some natural conditions have a spectral gap. The existence of a spectral gap is obtained by applying a simple and quite general strategy for proving lower bounds on the spectral gap of the generator of a classical or quantum spin dynamics. This general scheme is interesting in its own right and therefore, although the basic idea is not new, we present it in a system-independent setting. The results are illustrated with an number of examples.Comment: 48 pages, Plain TeX, BN26/Oct/9

    Evolution and instabilities of disks harboring super massive black holes

    Full text link
    The bar formation is still an open problem in modern astrophysics. In this paper we present numerical simulation performed with the aim of analyzing the growth of the bar instability inside stellar-gaseous disks, where the star formation is triggered, and a central black hole is present. The aim of this paper is to point out the impact of such a central massive black hole on the growth of the bar. We use N-body-SPH simulations of the same isolated disk-to-halo mass systems harboring black holes with different initial masses and different energy feedback on the surrounding gas. We compare the results of these simulations with the one of the same disk without black hole in its center. We make the same comparison (disk with and without black hole) for a stellar disk in a fully cosmological scenario. A stellar bar, lasting 10 Gyrs, is present in all our simulations. The central black hole mass has in general a mild effect on the ellipticity of the bar but it is never able to destroy it. The black holes grow in different way according their initial mass and their feedback efficiency, the final values of the velocity dispersions and of the black hole masses are near to the phenomenological constraints.Comment: 10 pages, 8 figures, accepted for pubblication in "Astrophysics and Space Science

    Position-sensitive detection of ultracold neutrons with an imaging camera and its implications to spectroscopy

    Full text link
    Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated using an imaging charge-coupled device (CCD) camera. A spatial resolution less than 15 μ\mum has been achieved, which is equivalent to an UCN energy resolution below 2 pico-electron-volts through the relation δE=m0gδx\delta E = m_0g \delta x. Here, the symbols δE\delta E, δx\delta x, m0m_0 and gg are the energy resolution, the spatial resolution, the neutron rest mass and the gravitational acceleration, respectively. A multilayer surface convertor described previously is used to capture UCNs and then emits visible light for CCD imaging. Particle identification and noise rejection are discussed through the use of light intensity profile analysis. This method allows different types of UCN spectroscopy and other applications.Comment: 12 figures, 28 pages, accepted for publication in NIM
    corecore